
Quarkonia dissolve from:

Cold Nuclear Matter

Debye screening 

Landau damping...

Today: very near Tc, Tc < T < 1.2 Tc, qualitatively new region.

    Not just “a” screening  mass.  Higgs effect gives “split” masses:
some heavy, some light.

    Propagation of color fields dynamically suppressed

Effects on Debye screening, Landau damping, for quarkonia?

Implications for quarkonia
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An effective (matrix) model for deconfinement
1. Lattice: SU(N) gauge theories, without quarks.  Most quantities scale with N.
       Not just the pressure: Polyakov loop, correlation functions, interface tensions

2. Matrix model: simple mean field model, valid in large N expansion  
 
   Fit pressure, including latent heat, for all N, with two (N-dependent) parameters

   Good agreement with interface tensions, both order-order and order-disorder

   Problem: sharp disagreement with the (renormalized) Polyakov loop - ?

   Qualitatively new: adjoint Higgs phase, pattern of split masses, for T < 1.2 Tc.

Unexpected punchline: transition region very narrow, < 1.2 Tc!

Dumitru, Guo, Hidaka, Korthals-Altes, & RDP, arXiv:1011.3820 + 11...  DGHKP
Generalization of Meisinger, Miller, Ogilvie ph/0108009, MMO

Also: ...RDP, ph/0608242; Y. Hidaka & RDP, 0803.0453, 0906.1751, 0907.4609, 0912.0940.
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What the lattice tells us

Its not just the pressure...
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Lattice: SU(N) thermodynamics, Tc → 4 Tc

SU(N) gauge theories without quarks, temperature T ≠ 0
Scaled by ideal gas, energy and pressure approximately independent of N.  
e and p ≈ 0 below Tc: ~ N2 - 1 gluons above Tc, vs ~ 1 hadrons below.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4
T/Tc

/ SB

p/pSB

SU(3)
SU(4)
SU(6)

Boyd, Engels, Karsch, 
Laermann, Legeland, 
Luetgemeier, Petersson, 
lat/9602007
Datta & Gupta, 1006.0938
                         
“Width” of transition
region = “semi”-QGP?

pressure: wide ~ 4 Tc

energy: narrow, ~ 1.5 Tc

← p/pideal

e/eideal ↓

↑ Tc 4 Tc ↑T/Tc→
4Tuesday, June 14, 2011



Lattice: peak in conformal anomaly
For SU(N), “peak” in e-3p/T4  just above Tc.  Approximately uniform in N.

Not near Tc: transition 2nd order for N = 2, 1st order for all N ≥ 3
         N=3: weakly 1st order.  N =  ∞: strongly 1st order (latent heat ~ N2)

 0

 0.2

 0.4

 1  2  3  4

/(T
A 

T4 )

T/Tc

SU(3)
SU(4)
SU(6)

Datta & Gupta, 1006.0938

long tail?

↑ Tc 4 Tc ↑

1
N2 − 1

e− 3p

T 4
↑

T/Tc→
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Lattice: scaling of the conformal anomaly
Scaling: (e-3p)/T2 approximately constant near Tc: MMO ’01; RDP, ph/0608242

Only true near Tc ; eventually, (e-3p)/T4 ~ g4(T) 

Datta & Gupta, 1006.0938
 0

 0.2

 0.4

 1  2  3  4

/(T
A 

T2  T
c2 )

T/Tc

SU(3)
SU(4)
SU(6)

↑ Tc 4 Tc ↑T/Tc→

1
N2 − 1

e− 3p

T 2 T 2
c

↑
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Lattice: precise scaling of the conformal anomaly

Lattice: WHOT. Change # time steps at fixed lattice scale.  Higher precision, ± 1%

p(T ) ≈ # T 2(T 2 − c T 2
c ) , c = 1.00± .01

T : 1.2→ 2 Tc :
e− 3p

T 2
≈ (543 MeV)2 ± 1%

1.0 1.2 1.4 1.6 1.8 2.0

0.1

0.2

0.3

0.4

0.5

2 Tc↑↑ Tc

1
8

e− 3p

T 2 T 2
c

↑

T/Tc→
↑ 1.2 Tc

Umeda, Ejiri, Aoki, Hatusda,
Kanaya, Maezawa, Ohno, 
0809.2842
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Lattice vs resummed perturbation theory

e− 3p

T 2 T 2
c

↑

HTL resummed perturbation thy., next to next to leading order, works down to - 8 Tc?
Assume that the QCD coupling runs like α(2πT): Braaten & Nieto, hep-ph/9501375
Coupling is moderate even at Tc, α(2πTc) ~ 0.3, 

Andersen, Leganger, 
Strickland, Su, 1105.0514
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“Hidden” Z(2) spins in SU(2)
Consider  Uc = constant gauge transf. 
Two colors: det Uc = (-)2 = 1, so Uc ∈ SU(2)

Uc very special: ~ 1, so gluons invariant:

If gluons invariant, does Uc matter?
At temperature T ≠ 0, Wilson line changes:

τ = imaginary time: 0 → 1/T: 
aperiodic gauge transf., U(1/T) = Uc U(0).

L propagator for “test” quark, with color electric charge.  

SU(3): 3rd root of unity, j=0,1,2
SU(N): Nth root, Z(N) symmetry.

Z(N) spins of ‘t Hooft, without quarks
Quarks act like background Z(N) field, break Z(N) symmetry

N = 3

Aµ → U†
c Aµ Uc = +Aµ

ψ → −ψ

Uc =
�
−1 0
0 −1

�
= −1

L = P eig
R 1/T
0 A0 dτ → −L

Uc = e2πij/3 1
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Usual Z(2) spins vs Polyakov Loop
Ordinary spins, s: symmetry broken at low T, 
                              restored for T > Tc.  First order transition:

T→ 
Tc ↑ 

<s>↑

T→ Tc ↑ 

<l>↑

< � >∼ e−Ftest qk/T

� =
1
N

trL
L = SU(N) matrix.  Trace = Polyakov loop, l:

< l > gauge invariant, measures color ionization:

Color is not ionized in confined phase, so
confinement => < l >  = 0: Z(N) symmetric phase.

Color ionized above Tc, so 
< l >  ≠ 0, Z(N) broken, above Tc.

Svetitsky and Yaffe ’80: SU(3) 1st order because of Z(3) symmetry:
      Eff. Lag. of loops has cubic terms, l3 + ( l*)3.
      Does not apply for N > 3.  So why is deconfinement 1st order for all N ≥ 3?
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Polyakov Loop from Lattice: pure Glue, no Quarks
Lattice: (renormalized) Polyakov loop.  Strict order parameter
Three colors: Gupta, Hubner, Kaczmarek, 0711.2251.
Suggests transition region, “semi” QGP, is wide, to ~ 4 Tc, like pressure.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2  4  6  8  10  12

L3

r

T/Tc

-
direct renormalization

QQ renormalization

T/Tc → 

<loop>↑

↑ ~ 4 Tc 

←1.0

← ~ 0.4

↑ Tc↑T=0

←  Confined  →← SemiQGP→ ←  “Complete” QGP  →   
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Polyakov Loop from Lattice: Glue plus Quarks, “Tc”

Quarks ~ background Z(3) field.  Lattice: Bazavov et al, 0903.4379.
3 quark flavors: weak Z(3) field, does not wash out approximate Z(3) symmetry.

0.0

0.2

0.4

0.6

0.8

1.0

 100  150  200  250  300  350  400  450

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T [MeV] 

Tr0 
Lren

p4, N!=6

8
asqtad, N!=6

8

↑“Tc”.8“Tc”↑ 2 “Tc”↑

← 0.2

←    Hadronic       →←            “Semi”-QGP               →←Complete QGP

<loop> ↑

↑T=0

←1.0

T → 
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Interface tensions: order-order & order-disorder
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T >> Tc T ~ Tc T < Tc

Im l↑
Re l→

Lattice, A. Kurkela, unpub.’d: 3 colors, loop l complex.  Distribution of loop
shows Z(3) symmetry

zInterface tension: box long in z.  
Each end: distinct but degenerate vacua.
Interface forms, action ~ interface tension:

T > Tc: order-order interface = ‘t Hooft loop:
             measures response to magnetic charge
               Korthals-Altes, Kovner, & Stephanov, hep-ph/9909516

Also: if trans. 1st order, order-disorder interface at Tc .

Z ∼ e−σintVtr
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Lattice: order-order interface tensions σ
Lattice: de Forcrand & Noth, lat/0510081. σ ~ universal with N
Semi-classical σ : Giovanengelli & Korthals-Altes ph/0102022; /0212298; /0412322: GKA ‘04
Above 4 Tc, semi-class σ ~ lattice.  Below 4 Tc, lattice σ <<  semi-classical σ.
         Even so, when N > 3, all tensions satisfy “Casimir scaling” at any T

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1  1.5  2  2.5  3  3.5  4  4.5

k/T
2  / 

(k
 (N

-k
))

T/Tc

SU(3)
SU(4), k=1
SU(4), k=2
SU(6), k=1
SU(6), k=2
SU(6), k=3
SU(8), k=1
SU(8), k=2
SU(8), k=3
SU(8), k=4

GKA T/ MSbar=1.35

↑ Tc 4.5 Tc↑N = 4

Semi-classical↓

T/Tc→

 ⇐ lattice

σk

T 2 k(N − k)
↑
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0

0.5

1

1.5

2

2.5

3

3.5

1 1.5 2 2.5 3 3.5 4 4.5 5

µ(T)/T

T/Tc

Nt=4
Nt=6
Nt=8

0

1

2

3

4

1 1.5 2 2.5 3 3.5 4

T/Tc

mD/T  
Nf=0
Nf=2

Lattice: how does A0 mass change as T → Tc?

Kaczmarek, Karsch, Laermann, 
Lutgemeier lat/9908010

μ/T decreases as T → Tc

�trL†(x) trL(0)� ∼ e−µx/xd

mD/T increases as T → Tc

Which way do masses go as T → Tc?
Both change below ~ 1.5 Tc.
Cucchieri, Karsch, Petreczky lat/0103009, 
Kaczmarek, Zantow lat/0503017

T/Tc→

T/Tc→

Gauge invariant: 2 pt function of loops:

Gauge dependent: singlet potential

�tr
�
L†(x)L(0)

�
� ∼ e−mDx/x

↑ Tc ↑ 2Tc

mD

T
↑

µ

T
↑

↑ 2Tc↑ Tc
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The competition
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Models for the semi-QGP, Tc to 4 Tc

1. Massive gluons: Peshier, Kampfer, Pavlenko, Soff ’96...Castorina, Miller, Satz 1101.1255
                                                                             Castorina, Greco, Jaccarino, Zappala 1105.5902 

p(T ) = #T 4 −m2 T 2 + . . .
Mass decreases pressure, so adjust
m(T) to fit p(T).  Simple model.
Gluons very massive near Tc.

2. Polyakov loops: Fukushima ph/0310121...Hell, Kashiwa, Weise 1104.0572

Veff (T ) ∼ m2�∗� + T log f(�∗�)Effective potential of Polyakov loops.
Potential has 5 parameters,  most ungainly
With quarks, go from μ = 0 to μ ≠ 0,  at T ≠ 0 m2 = T 4

3�

i=0

ai(Tc/T )i

3. AdS/CFT: Gubser, Nellore 0804.0434...Gursoy, Kiritsis, Mazzanti, Nitti, 0903.2859

Add potential for dilaton, φ, to fit pressure.
Only infinite N. Relatively simple potential,

V (φ) ∼ cosh(γφ) + b φ2

All of these models fit only the pressure, and not interface tensions.  
Masses: near Tc, massive gluons heavy, Polyakov loops light.  
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Matrix model: two colors

Simple approximation: expand about constant, diagonal A0

Two colors: transition 2nd order, vs 1st for N ≥ 3
                                                      

Implicitly: using large N expansion at N = 2 (!)
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Matrix model: SU(2)
Simplest possible approx.: model constant gauge transf.’s with constant A0 ~ σ3:

Confined vacuum, Lc,  halfway in between:
            q = 1/2, l = 0 .

Classically, no potential for q.

Loop l real.  Z(2) degenerate vacua q = 0 and 1:

x xx Re l→
q = 0q = 1 q =

1
2

1 -1  0 

A0 =
πT

g
q σ3 , σ3 =

�
1 0
0 −1

�

� = cos(πq)

Lc =
�

i 0
0 −i

�

L(q) =
�

eiπq 0
0 e−iπq

�
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Potential for q, interface tension
Computing to one loop order about background A0 generates a potential for q:

q →

Vpert(q) ↑

10x x

x

Use Vpert(q) to compute σ: Bhattacharya, Gocksch, Korthals-Altes, RDP, ph/9205231.

⇒ σ =
4π2

3
√

6
T 2

�
g2

Computation semi-classical: A0~ 1/g, so classical action ~ 1/g2.  But Vpert only ~ 1

Balancing the two gives σ ~ 1/√g2 (and not 1/g2).   Interface large in z, ~ 1/√g2 T.  

Justifies expansion about constant A0.  GKA ‘04: corrections to σ ~ g3. g4?

Vtot(q) =
2π2T 2

g2

�
dq

dz

�2

+ Vpert(q)

Vpert(q) =
4π2

3
T 4 q2(1− q)2

Gross, RDP, Yaffe, ‘81
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Symmetries of the q’s

In all cases: q → q + 2 : q angular variable.  
                    Valid with quarks.

Pure glue: also, q → q + 1 : Z(2) transf., L → - L 

For pure glue, can restrict q: 0 → 1.  

Then Z(2) transf. q → 1 - q: 
               Z(2) transf., plus exchange of eigenvalues

Hence for pure glue, any potential of q must be invariant under q → 1- q

L(q) =
�

eiπq 0
0 e−iπq

�

Wilson line L not gauge invariant, L → Ω† L Ω.  Its eigenvalues, e± i π q , are.

The ordering of the eigenvalues of L is immaterial.  Symmetries:

L(1− q) = −
�

e−iπq 0
0 eiπq

�
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Potentials for the q’s
Consider expansion about perturbative vacuum.  GKA ‘04: to ~ g3.
      To 2 loop order, find terms Vpert~ g2 T4 q(1-q).  Destabilize pert. vacuum?
      Absorbed into 1 loop corrected eigenvalues of L, e± i π qren

Perturbatively, qren = 0 order by order in g. Gocksch & RDP, ph/9302233
Add non-pert. terms, by hand, to generate <q> ≠ 0 :

←T >> Tc:  〈q〉 = 0,1

T < Tc:  〈q〉 = 1/2→

q → 10x x

x

1q →0x x

xVeff (q) ↑

Veff (q) ↑
Veff (q) = Vpert + Vnon
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Possible “phases” and transitions
Three possible “phases”: 

〈q〉 = 0, 1:  〈l〉 = ± 1: “Complete” QGP: usual perturbation theory. T >> Tc .

0 < 〈q〉 < 1/2: 〈l〉 < 1: “semi”-QGP.  Adjoint Higgs phase for A0. x Tc > T > Tc  x?

〈q〉 = 1/2: 〈l〉 = 0 : confined phase.  T < Tc

Lattice: evidence for semi-QGP, where 〈l〉 < 1: 
not just direct transition from complete QGP, to confined phase.

Possible to have a phase transition from a phase symmetric in q, 〈q〉 = 0, 
to Higgs phase, 〈q〉 ≠ 0, at some temperature above Tc.  
           (Since adjoint Higgs phase, though, need not have transition.)

Strongly constrains possible non-perturbative terms, Vnon(q).
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Vnon(q) ∼ q(1− q)

Transition at “a”=1/16, but 1st order, directly from complete QGP, to confinement
No semi-QGP?  Also, transition to confined phase should be 2nd, not 1st, order.

Getting three “phases”, one transition

0.2 0.4 0.6 0.8 1.0

0.001

0.002

0.003

0.004Simple guess: Vnon ~ loop2,

If Vnon(q) ~ q2 at small q, usually: direct 1st order transition, with no semi-QGP, 
                 or: 2nd order transition at a T > Tc, from complete to semi-QGP.

Easy to avoid, if Vnon(q) ~ q for small q.  Then 〈q〉  ≠  0 at all T.

Imposing the symmetry of q ↔ 1 - q, Vnon(q) must include

x xx

Veff ↑

q →

Veff ∼
a

π2
(�2 − 1) + q2(1− q)2 ∼ q2(1− a)− 2q3 + . . .
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Cartoons of deconfinement
Consider:

0.2 0.4 0.6 0.8 1.0

�0.015

�0.010

�0.005

⇓ a = 1/4: semi QGP

xx

Veff ↑

⇓ a = 0: complete QGP

0.2 0.4 0.6 0.8 1.0

0.01

0.02

0.03

0.04

0.05

0.06

x x

Veff ↑

q →

q →

0.2 0.4 0.6 0.8 1.0

�0.06

�0.05

�0.04

�0.03

�0.02

�0.01

a = 1/2:                       Tc=>
Stable vacuum at q = 1/2
Transition second order

x

q →

Veff = q2(1− q)2 − a q(1− q) , a ∼ T 2
c /T 2
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Meisinger, Miller, Ogilvie ph/0108009, MMO: 
take Vnon ~ T2

0-parameter matrix model, N = 2

Two conditions: transition occurs at Tc, pressure(Tc) = 0
Fixes c1 and c3, no free parameters.  Not close to lattice data (from ’89!)

1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

↑ Tc 3 Tc ↑T/Tc→

e− 3p

3 T 4
↑

 ⇐ 0-parameter model

 ⇐ Lattice

Vnon(q) =
4π2

3
T 2 T 2

c

�
− c1

5
q(1− q) +

c3

15

�

Lattice: Engels, Fingberg, 
Redlich, Satz, Weber ‘89
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1-parameter matrix model, N = 2
Dumitru, Guo, Hidaka, Korthals-Altes, RDP ‘10:  to usual perturbative potential,

Add a non-perturbative potential Vnon ~ T2 Tc2.  Also add a term like that in Vpert:

Vpert(q) =
4π2

3
T 4

�
− 1

20
+ q2(1− q)2

�

Now just like any other mean field theory.  〈q〉  given by minimum of Veff:

Veff (q) = Vpert(q) + Vnon(q) Veff (q)
dq

����
q=�q�

= 0

p(T ) = −Veff (�q�)〈q〉 is (implicitly) T-dependent.  Pressure:

Vnon(q) =
4π2

3
T 2 T 2

c

�
−c1

5
q(1− q)−c2 q2(1− q)2 +

c3

15

�
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Lattice vs matrix models, N = 2
Choose c2 to fit e-3p/T4: optimal choice

Reasonable fit to e-3p/T4; also to p/T4, e/T4.

N.B.: c2 ~ 1.  At Tc, terms ~ q2(1-q)2 almost cancel.  

↑ Tc 3 Tc ↑T/Tc→

e− 3p

3 T 4
↑

1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4
 ⇐ Lattice  

 ⇐ 0-parameter 

 ⇐ 1-parameter 

c1 = 0.23 , c2 = .91 , c3 = 1.11

Lattice: Engels, Fingberg, 
Redlich, Satz, Weber ‘89
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Lattice vs 1-parameter model, N = 2
c1 = 0.23 , c2 = .91 , c3 = 1.11

-0.5

 0

 0.5

 1

 1.5

 1  1.5  2  2.5  3
T / TC

p/T4

Latt. p/T4
e/3T4

Latt. e/3T4
/T4

Latt. /T4

↑ Tc 3Tc ↑T/Tc→

 ⇐ e-3p/T4, lattice

 ⇐ e-3p/T4, model

 ⇑ p/T4, lattice

 ⇓ e/T4, model  ⇓ e/T4, lattice

 ⇑ p/T4, model
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Width of transition region, 0- vs 1-parameter
1-parameter model: get sharper e-3p/T4 because 〈q〉 -> 0 much quicker above Tc.
Physically: sharp e-3p/T4 implies region where 〈q〉 is significant is narrow

N.B.: 〈q〉 ≠ 0 at all T, but numerically, negligible above ~ 1.2 Tc; p ~ 〈q〉2.
Above 1.2 Tc, the T2 term in the pressure is due entirely to the constant term, c3!

1.2 1.4 1.6 1.8 2.0

0.1

0.2

0.3

0.4

0.5

 ⇐ 0-parameter

 ⇓ 1-parameter

�q� ↑

↑ Tc 2 Tc ↑T/Tc→
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Polyakov loop: matrix models vs lattice, N = 2
Lattice: renormalized Polyakov loop.  Matrix model: 〈l〉 = cos( π q/2)

0-parameter model: close to lattice
1-parameter model: sharp disagreement. 〈l〉 rises to ~ 1 much faster - ?

1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

 ⇐ lattice

 ⇐ 0-parameter

 ⇓ 1-parameter

��� ↑

↑ Tc T/Tc→ 2 Tc ↑

Lattice:
Cardoso, Cardoso,
Bicudo, 1104.5432
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Interface tension, N = 2
σ vanishes as T→Tc , σ ~ (t-1)2ν .
Ising 2ν ~ 1.26; Lattice: ~ 1.32.
Matrix model: ~ 1.5: c2 important.

Semi-class.: GKA ’04.  Include corr.’s ~ g2 in matrix σ(T) (ok T > 1.2 Tc)
N.B.: width of interface diverges as T→Tc, ~ √(t2 - c2)/(t2-1).

σ(T ) =
4π2T 2

3
�

6g2

(t2 − 1)3/2

t (t2 − c2)
, t =

T

Tc

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6  2.8

/T
2

T / TC

Latt. data SU(2)
model, SU(2)

GKA

↑ Tc 2.8 Tc ↑T/Tc→

 ⇐ matrix model 
Semi-classical⇒

 ⇐ lattice

σ

T 2
↑

 ⇐ lattice

Lattice:
de Forcrand, 
D’Elia, Pepe, 
lat/0007034 
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Adjoint Higgs phase, N = 2
 A0cl ~ q σ3, so 〈q〉 ≠ 0 generates an (adjoint) Higgs phase:
RDP, ph/0608242; Unsal & Yaffe, 0803.0344, Simic & Unsal, 1010.5515

In background field, A = A0cl + Aqu : D0cl Aqu = ∂0 Aqu + i g [A0cl , Aqu]
Fluctuations ~ σ3 not Higgs, ~ σ1,2 Higgsed, get mass ~ 2 π T 〈q〉
Hence when 〈q〉 ≠ 0, when T < 1.2 Tc, splitting of masses:

1.0 1.1 1.2 1.3 1.4 1.5
0.0

0.2

0.4

0.6

0.8

1.0

↑ Tc

T/Tc→
1.5 Tc ↑

 ⇐ diagonal A0 mode

⇐ off-diagonal A0 modesmeff

mpert
↑

At Tc: mdiag = 0,
moff ~ 2 mpert.

1 →

↑ 1.2 Tc

 mpert = √2/3 g T:

        m/mpert ~ .56
at 1.5 Tc, from Vnon.
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Matrix model: N ≥ 3

Why the transition is always 1st order

One parameter model
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Z(3) paths in SU(3) gauge

For SU(3), two diagonal generators, 
λ3 =




1 0 0
0 −1 0
0 0 0



 ; λ8 =




1 0 0
0 1 0
0 0 −2





Z(3) paths: q8 ≠ 0, q3 = 0:

Three degenerate vacua, for q8 = 0, 1, and 2.  
Move between vacua along blue lines,

�0.4 �0.2 0.2 0.4 0.6 0.8 1.0

�0.5

0.5

q8 = 0

Re l→

Im l↑

x

x

x

q8 = 1

q8 = 2

A0 =
2πT

3g
(q8 λ8 + q3 λ3)

L = e2πiq8λ8/3

� =
1
3

trL =
�
e2πi/3

�q8

, if q8 = 0, 1, 2
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Confining vacuum in SU(3)
Alternately, consider moving along λ3.  
In particular, consider q3 = 1:

Lc =




e2πi/3 0 0

0 e−2πi/3 0
0 0 1





trLc = trL2
c = 0

Lc is the confining vacuum, X:
“invariant” under Z(3) transf.’s.

Move from deconfined vacuum, L = 1,
to the confined vacua, Lc, along red line:

�0.4 �0.2 0.2 0.4 0.6 0.8 1.0

�0.5

0.5

L = e2πiq3λ3/3

Re l→

Im l↑

x

x

xx
Elements of e2π i/3 Lc same as those of Lc.  Hence

Lc

36Tuesday, June 14, 2011



Potentials for matrix models, any N

Simplest ansatz: constant, diagonal A0:

At 1-loop order, perturbative potential

Aij
0 =

2πT

g
qi δij , i, j = 1 . . . N

Assume non-perturbative potential ~ T2 Tc2:

For SU(N), Σj=1...N qj = 0.  Hence N-1 independent qj’s, # diagonal generators.

Vnon(q) =
2π2

3
T 2T 2

c



− c1

5

�

i,j

qij(1− qij)− c2

�

i,j

q2
ij(1− qij)2 +

4
15

c3





Vpert(q) =
2π2

3
T 4



− 4
15

(N2 − 1) +
�

i,j

q2
ij(1− qij)2



 , qij = |qi − qj |
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Getting to confinement in qj space
For general problem of interfaces, need all N-1 directions in qj space.

Move from pert. vacuum, to the confining point, along one direction,  qjc:

Perturbative vacuum: q = 0; 
Confining point: q = 1/2.

For 3 colors, 3 eigenvalues, e± 2π i q/3 , 1:

qc
j =

�
2j −N − 1

N

�
q , j = 1 . . . N

��� = 01 > ��� > 0��� = 1

� =
1
3

�
e2πiq/3 + e−2πiq/3 + 1

�
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Why deconfinement is 1st order for all N ≥ 3

Never a term linear in φ.  No cubic term when N = 2, but for any N ≥ 3!

The coefficient of the cubic term is special to the model, but its existence is not.
Along qc in qj space, about φ = 0 there is no symmetry of φ → - φ for any N  ≥ 3.  
Hence cubic terms in φ, and so a 1st order transition, are generic.

Special to matrix model, with the qi’s elements of Lie algebra.

Svetitsky and Yaffe ’80: from loops, elements of Lie group, 1st order only for N = 3

Define φ = 1 - 2q,
Confining point φ = 0

m2
φ = 1 +

6
N2

− c1

t2 − c2

Vtot =
π2(N2 − 1)

45
T 4

c t2 (t2 − 1) �V (φ, t) , t =
T

Tc

�V (φ, t) = −m2
φ φ2−2

�
N2 − 4

N2

�
φ3 +

�
2− 3

N2

�
φ4

39Tuesday, June 14, 2011



Lattice vs 0- and 1- parameter matrix models, N = 3
Results for N=3 similar to N=2.
0-parameter model way off.
Good fit e-3p/T4 for 1-parameter model, 

Again, c2 ~ 1, so at Tc, terms ~ q2(1-q)2 almost cancel.  

c1 = 0.32 , c2 = 0.83 , c3 = 1.13

1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

↑ Tc 3 Tc ↑T/Tc→

 ⇐ 1-parameter 

 ⇐ 0-parameter 

 ⇐ Points: lattice  
Lattice:
Bielefeld, lat/9602007
Datta & Gupta, 1006.0938e− 3p

8 T 4
↑
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Lattice vs 1- parameter model, N = 3

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1  1.5  2  2.5  3

T / TC

p/T4

Latt. p/T4
e/3T4

Latt. e/3T4
/T4

Latt. /T4

↑ Tc 3Tc ↑T/Tc→

 ⇐ e-3p/T4, lattice

 ⇐ e-3p/T4, model

  ⇓ e/T4, lattice  ⇓ e/T4, model

 ⇑ p/T4, lattice
 ⇑ p/T4,model

c1 = 0.32 , c2 = 0.83 , c3 = 1.13
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Polyakov loop: matrix models vs lattice, N = 3

1.0 1.2 1.4 1.6 1.8 2.0
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Renormalized Polyakov loop from lattice does not agree with either matrix model
〈l〉 - 1 ~ 〈q〉2: sharper e-3p/T4 for 1-parameter model due to quicker decrease in 〈q〉
By 1.2 Tc,  〈q〉 negligible, ~ .05 
Again, for T > 1.2 Tc, the T2 term in pressure due entirely to the constant term, c3!

↑ Tc T/Tc→ 2 Tc ↑

 ⇐ lattice

 ⇑ 0-parameter

1-parameter ⇓

��� ↑
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 0

 0.5

 1

 1.5

 2

 2.5

 1  1.5  2  2.5  3  3.5  4  4.5  5

/T
2  / 

(N
-1

)

T / TC

Lattice data
GKA

model, SU(2)
model, SU(3)

σ

(N − 1)T 2
↑

Semi-classical⇒

 ⇐ matrix model,
             N = 2 

 ⇐ matrix model,
             N = 3 

↑ Tc 5 Tc ↑T/Tc→

Lattice:
de Forcrand, 
D’Elia, Pepe, 
lat/0007034 
de Forcrand, Noth
lat/0506005

Interface tension, N = 2 and 3
Order-order interface tension, σ, from matrix model close to lattice.
For T > 1.2 Tc, path along λ8; for T < 1.2 Tc, along both λ8 and λ3.

σ(Tc)/Tc2 nonzero but small, ~ .02.  Results for N =2 and N = 3 similar - ?
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Adjoint Higgs phase, N = 3

For SU(3), deconfinement along A0cl ~ q λ3.  Masses ~ [λ3, λi]: two off-diagonal.
Splitting of masses only for T < 1.2 Tc:
Measureable from singlet potential,  〈tr L†(x) L(0)〉, over all x.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 1  1.2  1.4  1.6  1.8  2

m
 / 

gT

T / TC

a=b
|a-b|=1
|a-b|=2

T/Tc→

meff

mpert
↑

⇐ 4 off-diagonal, K’s

⇐ 2 off-diagonal, π’s

⇐ 2 diagonal modes

At Tc: mdiag 
small, but ≠ 0

mpert = g T,
m/mpert ~ .8 at 1.5 Tc, from Vnon.
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Matrix model: N ≥ 3

To get the latent heat right, 

Two parameter model.

Improve thermodynamics, interface tensions.
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Latent heat, and a 2-parameter model
Latent heat, e(Tc)/Tc4:  1-parameter model too small:
1-para.: 0.33.  BPK: 1.40 ± .1; DG: 1.67 ± .1.  

2-parameter model, c3(T). Like MIT bag constant
WHOT: c3(∞) ~ 1.  Fit c3(1) to DG latent heat
Fits lattice for T < 1.2 Tc, overshoots above.

1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

e− 3p

8 T 4
↑

↑ Tc 3Tc ↑T/Tc→

 ⇐ Lattice  

 ⇐ 2-parameter 

 ⇐ 1-parameter 

Latent heat, lattice:
BPK: Beinlich, 
Peikert, Karsch 
lat/9608141
DG: Datta, Gupta 
1006.0938

c1 = .833 , c2 = .552

Bag const ~ (203 MeV)4

c2 not near 1, vs 1-para.

c3(1) = 1.33 , c3(∞) = .95

c3(T ) = c3(∞) +
c3(1)− c3(∞)

(T/Tc)2
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1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

Anomaly: 2-parameter model vs lattice

e− 3p

8 T 4
↑

↑ Tc 3Tc ↑T/Tc→

 ⇐ Lattice  

 ⇐ 2-parameter 

47Tuesday, June 14, 2011



1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

0.5

1
8

e− 3p

T 2 T 2
c

↑

↑ Tc 3Tc ↑T/Tc→

 ⇐ Lattice  

 ⇐ 2-parameter 

Anomaly times T2: 2-parameter model vs lattice
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Thermodynamics of 2-parameter model, N = 3

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1  1.5  2  2.5  3
T / TC

Latt. p/T4

p/T4
Latt. e/3T4

e/3T4
Latt. /3

/3

 ⇐ e-3p/T2Tc2, lattice

 ⇓e-3p/T2Tc2, model

 ⇑ p/T4, lattice

 ⇑ p/T4, lattice

  ⇓ e/T4, lattice
 ⇓ e/T4, model

T/Tc→

c3(1) = 1.33 , c3(∞) = .95 , c1 = .833 , c2 = .552
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Interface tensions, 2-parameter model, N = 3
Order-order interface tension, σ, close to lattice. Order-order σ(Tc)/Tc2 ~ .043.  

1st order transition, so can compute order-disorder σ(Tc)/Tc2 ~ .022, vs
Lattice: Lucini, Teper, Wegner, lat/0502003, .019 Beinlich, Peikert, Karsch lat/9608141 0.16

 0

 0.5

 1

 1.5

 2

 2.5

 1  1.5  2  2.5  3  3.5  4  4.5  5

/T
2  / 

(N
-1

)

T / TC

Latt. data SU(2)
Latt. data SU(3)

model, SU(2)
model, SU(3)

σ

(N − 1)T 2
↑

↑ Tc 5 Tc ↑

lattice, N=3 ⇓

 ⇑ 2-parameter model, N=3
lattice, N=3 ⇓

Lattice:
de Forcrand, 
D’Elia, Pepe, 
lat/0007034
de Forcrand, Noth
lat/0506005

Order-order σ:
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2-parameter model, N = 4
Assume c3(∞) = 0.95, like N=3.  Fit c3(1) to latent heat, Datta & Gupta, 1006.0938
Order-disorder  σ(Tc)/Tc2 ~ .08, vs lattice, .12, Lucini, Teper, Wegner, lat/0502003

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1  1.5  2  2.5  3
T / TC

Latt. p/T4

p/T4
Latt. e/3T4

e/3T4
Latt. /3

/3 T/Tc→

c3(1) = 1.38 , c3(∞) = .95 , c1 = 1.025 , c2 = 0.39

 ⇑ p/T4, lattice

 ⇑ p/T4, model

  ⇓ e/T4, lattice
  ⇓

 ⇓ e/T4, model

 ⇐ e-3p/T2Tc2, lattice
 ⇓e-3p/T2Tc2, model
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2-parameter model, N = 6

 ⇑ p/T4, lattice

Order-disorder  σ(Tc)/Tc2 ~ .25, vs lattice, .39, Lucini, Teper, Wegner, lat/0502003

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1  1.5  2  2.5  3
T / TC

Latt. p/T4

p/T4
Latt. e/3T4

e/3T4
Latt. /3

/3 T/Tc→

 ⇑ p/T4, model

  ⇓ e/T4, lattice
  ⇓

 ⇓ e/T4, model

 ⇐ e-3p/T2Tc2, lattice

 ⇓e-3p/T2Tc2, model

c3(1) = 1.42 , c3(∞) = .95 , c1 = 1.21 , c2 = 0.23
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Transition region narrow: for pressure, < 1.2 Tc!
                   For interface tensions, < 4 Tc...

Above 1.2 Tc, pressure dominated by constant term ~ T2 .

What does this term come from?    Gluon mass (for spatial gluons)?  

In 2+1 dimensions, ideal T3. Caselle + ...: also T2 term in pressure.
             But mass would be m2 T, not m T2.    

T2 term like free energy of massless fields in 2 dimensions: string? Above Tc?

To say the least: need to include quarks!

Can then compute temperature dependence of: 

              shear viscosity, energy loss of light quarks, quarkonia damping....

Conclusions
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Lattice: SU(N) in 2+1 dimensions
Caselle, Castagnini, Geo, Gliozzi, Panero, 1105.0359, unpublished
SU(N) for N = 2, 3, 4, 5

p(T ) ≈ # T 2(T − c Tc) , c ≈ 1.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

 / 
[ T

3  ( 
N2  - 

1 
) ]

Tc / T

T2-dependence in the trace of the energy-momentum tensor

SU(2)
SU(3)
SU(4)
SU(5)

1
N2 − 1

e− 2p

T 3
↑

Tc/T→

↑ 10 Tc ↑ 1.1 Tc↑ 2 Tc
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